Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.297
Filtrar
1.
J Vector Ecol ; 48(2): 78-88, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37843450

RESUMO

Controlling mosquito-borne disease is a major global challenge due to the rise of insecticide-resistant mosquitoes. In response, we conducted a study in Chiang Mai Province, Thailand, which is one of the largest and the most popular cities for tourists in Southeast Asia, to explore the potential of local species as biological control agents for mosquito larvae. Mosquito larvae and aquatic predators were sampled from large and small habitats, while relevant physico-chemical parameters were measured. The study identified 560 predators and 1,572 mosquitoes, with most mosquito species belonging to the genus Culex. Additionally, the study identified 16 predator taxa, including four fish taxa and 12 taxa of predatory aquatic insects belonging to four orders: Coleoptera, Hemiptera, Odonata, and Diptera. The study found that several locally occurring predator species, namely Poecillia, Laccophilus, Lutzia, Toxorhynchites splendens, Agrionoptera, and Pseudarion, shared habitats with mosquitoes, indicating their potential as effective biological control agents for mosquito control. Conductivity, dissolved oxygen, and pH were the important physico-chemical parameters that affect both predators and mosquito larvae. Consequently, promoting native predators and reducing mosquito larvae through habitat management would be a sustainable and ecologically friendly approach in large habitats where it is not possible to remove mosquito oviposition sites. In smaller habitats, releasing local aquatic predators and removing oviposition sites may be a suitable strategy.


Assuntos
Besouros , Culex , Culicidae , Feminino , Animais , Larva/fisiologia , Tailândia , Agentes de Controle Biológico , Ecossistema , Besouros/fisiologia , Culex/fisiologia , Comportamento Predatório
2.
J Therm Biol ; 115: 103594, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37429087

RESUMO

Cities are generally hotter than surrounding rural areas due to the Urban Heat Island (UHI) effect. These increases in temperature advance plant and animal phenology, development, and reproduction in the spring. However, research determining how increased temperatures affect the seasonal physiology of animals in the fall has been limited. The Northern house mosquito, Culex pipiens, is abundant in cities and transmits several pathogens including West Nile virus. Females of this species enter a state of developmental arrest, or reproductive diapause, in response to short days and low temperatures during autumn. Diapausing females halt reproduction and blood-feeding, and instead accumulate fat and seek sheltered overwintering sites. We found that exposure to increased temperatures in the lab that mimic the UHI effect induced ovarian development and blood-feeding, and that females exposed to these temperatures were as fecund as non-diapausing mosquitoes. We also found that females exposed to higher temperatures had lower survival rates in winter-like conditions, despite having accumulated equivalent lipid reserves relative to their diapausing congeners. These data suggest that urban warming may inhibit diapause initiation in the autumn, thereby extending the active biting season of temperate mosquitoes.


Assuntos
Culex , Culicidae , Vírus do Nilo Ocidental , Animais , Feminino , Cidades , Temperatura Alta , Vírus do Nilo Ocidental/fisiologia , Culex/fisiologia , Estações do Ano
3.
J Med Entomol ; 60(4): 690-697, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37235642

RESUMO

In diapausing mosquitoes, cold tolerance and prolonged lifespan are important features that are crucial for overwintering success. In the mosquito Culex pipiens, we suggest that PDZ domain-containing protein (PDZ) (post synaptic density protein [PSD95], drosophila disc large tumor suppressor [Dlg1], and zonula occludens-1 protein [zo-1]) domain-containing protein is involved with these diapause features for overwintering survival in Culex mosquitoes. The expression level of pdz was significantly higher in diapausing adult females in the early stage in comparison to their nondiapausing counterparts. Suppression of the gene that encodes PDZ by RNA interference significantly decreased actin accumulation in the midgut of early-stage adult diapausing females. Inhibition of pdz also significantly reduced the survivability of diapausing females which indicates that this protein could play a key role in preserving the midgut tissues during early diapause.


Assuntos
Culex , Culicidae , Feminino , Animais , Culex/fisiologia , Domínios PDZ
4.
J Med Entomol ; 60(2): 384-391, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36484651

RESUMO

West Nile virus remains the leading cause of arboviral neuroinvasive disease in the United States, despite extensive efforts to control the mosquito vectors involved in transmission. In this study, we evaluated the effectiveness of Altosid SR-20 (active ingredient, S-methoprene 20%) larvicide applications using truck-mounted ultra-low volume (ULV) dispersal equipment to target Culex pipiens Linnaeus (Diptera: Culicidae) and Cx. restuans (Theobald)larvae. A combination of emergence bioassays, open-field measurements of deposited S-methoprene and spray distribution using gas chromatography-mass spectrometry, and assessments of adult Culex spp. populations in response to applications were conducted over the summer of 2020 within the North Shore Mosquito Abatement District (IL, USA). Open-field applications revealed that dispersed Altosid SR-20 using ULV equipment was effective (75% emergence inhibition in susceptible lab strain Cx. pipiens larvae) up to 53 m. In suburban neighborhood applications, we found that S-methoprene deposition and larval emergence inhibition (EI) in front yards did not differ significantly from backyards. An overall EI of 46% and 28% were observed for laboratory strain Cx. pipiens and wild Cx. restuans larvae respectively, and both had an EI significantly higher than the untreated control group. The EI of exposed wild Cx. pipiens larvae did not differ from the untreated controls, suggesting an increased tolerance to S-methoprene. No difference in abundance of gravid or host-seeking adult Culex spp. post-application was detected between treated and untreated sites. These results document the ability of area-wide application to distribute S-methoprene, but this strategy will need further modifications and evaluation for Culex spp. management.


Assuntos
Culex , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Metoprene , Chicago , Mosquitos Vetores , Estações do Ano , Culex/fisiologia , Larva , Febre do Nilo Ocidental/prevenção & controle
5.
Parasit Vectors ; 15(1): 484, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550589

RESUMO

Organophosphate and carbamate insecticides have largely been used worldwide to control mosquito populations. As a response, the same amino acid substitution in the ace-1 gene (G119S), conferring resistance to both insecticides, has been selected independently in many mosquito species. In Anopheles gambiae, it has recently been shown that the G119S mutation is actually part of homogeneous duplications that associate multiple resistance copies of the ace-1 gene. In this study, we showed that duplications of resistance copies of the ace-1 gene also exist in the Culex pipiens species complex. The number of copies is variable, and different numbers of copies are associated with different phenotypic trade-offs: we used a combination of bioassays and competition in population cages to show that having more resistance copies conferred higher resistance levels, but was also associated with higher selective disadvantage (or cost) in the absence of insecticide. These results further show the versatility of the genetic architecture of resistance to organophosphate and carbamate insecticides around the ace-1 locus and its role in fine-tuned adaptation to insecticide treatment variations.


Assuntos
Anopheles , Culex , Inseticidas , Animais , Culex/fisiologia , Inseticidas/farmacologia , Inseticidas/metabolismo , Variações do Número de Cópias de DNA , Resistência a Inseticidas/genética , Alelos , Anopheles/genética , Carbamatos , Organofosfatos/farmacologia
6.
Parasit Vectors ; 15(1): 353, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182902

RESUMO

BACKGROUND: Both Culex quinquefasciatus and Cx. pipiens molestus are sibling species within Cx. pipiens complex. Even though they are hard to distinguish morphologically, they have different physiological behaviors. However, the molecular mechanisms underlying these differences remain poorly understood. METHODS: Transcriptome sequencing was conducted on antennae of two sibling species. The identification of the differentially expressed genes (DEGs) was performed by the software DESeq2. Database for Annotation, Visualization and Integrated Discovery was used to perform GO pathway enrichment analysis. The protein-protein interaction (PPI) network was constructed with Cytoscape software. The hub genes were screened by the CytoHubba plugin and Degree algorithms. The identified genes were verified by quantitative real-time PCR. RESULTS: Most annotated transcripts (14,687/16,005) were expressed in both sibling species. Among 15 identified odorant-related DEGs, OBP10 was expressed 17.17 fold higher in Cx. pipiens molestus than Cx. quinquefasciatus. Eighteen resistance-related DEGs were identified, including 15 from CYP gene family and three from acetylcholinesterase, in which CYP4d1 was 86.59 fold more highly expressed in C. quinquefasciatus. Three reproductive DEGs were indentified with the expression from 5.01 to 6.55 fold. Among eight vision-related DEGs, retinoic acid receptor RXR-gamma in Cx. pipiens molestus group was more expressed with 214.08 fold. Among the 30 hub genes, there are 10 olfactory-related DEGs, 16 resistance-related DEGs, and four vision-related DEGs, with the highest score hub genes being OBP lush (6041148), CYP4C21 (6044704), and Rdh12 (6043932). The RT-qPCR results were consistent with the transcriptomic data with the correlation coefficient R = 0.78. CONCLUSION: The study provided clues that antennae might play special roles in reproduction, drug resistance, and vision, not only the traditional olfactory function. OBP lush, CYP4C21, and Rdh12 may be key hints to the potential molecular mechanisms behind the two sibling species' biological differences.


Assuntos
Culex , Acetilcolinesterase , Animais , Culex/fisiologia , RNA-Seq , Receptores do Ácido Retinoico/genética
7.
Malar J ; 21(1): 244, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35996189

RESUMO

BACKGROUND: Parasites are recognized for their ability to modify host physiology and behaviours in ways that increase parasite fitness. Protozoan parasites of the genus Plasmodium are a group of widespread vector-borne parasites of vertebrates, causing disease to a wide range of hosts, but most notably to human and avian hosts. METHODS: The hypothesis that infection with the avian malaria, Plasmodium relictum (GRW4 lineage) impacts flight activity in one of their natural vectors, Culex quinquefasciatus, was tested using both parasites and mosquitoes colonized from local populations in East-Central Texas, USA. Groups of Cx. quinquefasciatus were allowed to feed directly on canaries with active P. relictum infections and control canaries with no P. relictum exposure history. Additionally, how P. relictum sporozoite invasion of mosquito salivary glands impacts mosquito flight activity behaviour was tested using a Locomotor Activity Monitor for both control and infected females. Generalized linear mixed models were used to evaluate the influence of infection status on the response variables of flight activity (continuous) and probability of flight occurring (binomial). RESULTS: Infection status was a significant predictor of flight activity and flight probability and interactions between infection status and experimental period of infection as well as infection status and dusk were statistically significant predictors of flight activity. Plasmodium relictum infected mosquitoes had a mean flight activity of 3.10 and control mosquitoes had an overall mean flight activity of 3.13. DISCUSSION: Based on these results, avian malaria parasites increase the flight activity of these mosquitoes at hours known for peak host-seeking behaviour but decrease overall diel activity. CONCLUSION: Although the ramifications of this behavioural change for P. relictum transmission are unclear, these results provide additional empirical evidence suggesting that avian malaria can influence mosquito behaviour and modulate transmission potential.


Assuntos
Culex , Culicidae , Malária Aviária , Malária , Plasmodium , Animais , Culex/fisiologia , Culicidae/parasitologia , Feminino , Humanos , Malária Aviária/parasitologia , Mosquitos Vetores
8.
J R Soc Interface ; 19(193): 20220285, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36000227

RESUMO

Male mosquitoes detect and localize conspecific females by their flight-tones using the Johnston's organ (JO), which detects antennal deflections under the influence of local particle motion. Acoustic behaviours of mosquitoes and their JO physiology have been investigated extensively within the frequency domain, yet the auditory sensory range and the behaviour of males at the initiation of phonotactic flights are not well known. In this study, we predict a maximum spatial sensory envelope for flying Culex quinquefasciatus by integrating the physiological tuning response of the male JO with female aeroacoustic signatures derived from numerical simulations. Our sensory envelope predictions were tested with a behavioural assay of free-flying males responding to a female-like artificial pure tone. The minimum detectable particle velocity observed during flight tests was in good agreement with our theoretical prediction formed by the peak JO sensitivity measured in previous studies. The iso-surface describing the minimal detectable particle velocity represents the quantitative auditory sensory range of males and is directional with respect to the female body orientation. Our results illuminate the intricacy of the mating behaviour and point to the importance of observing the body orientation of flying mosquitoes to understand fully the sensory ecology of conspecific communication.


Assuntos
Culex , Culicidae , Animais , Culex/fisiologia , Culicidae/fisiologia , Feminino , Voo Animal/fisiologia , Masculino , Som
9.
J Med Entomol ; 59(5): 1500-1506, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35976948

RESUMO

Mosquitoes and other blood feeding arthropods are vectors of pathogens causing serious human diseases, such as Plasmodium spp. (malaria), Wuchereria bancrofti (lymphatic filariasis), Borrelia burgdorferi (Lyme disease), and viruses causing dengue, Zika, West Nile, chikungunya, and yellow fever. Among the most effective strategies for the prevention of vector-borne diseases are those aimed at reducing human-vector interactions, such as insecticide applications and insecticide-treated bed nets (ITNs). In some areas where ITNs are widely used, behavioral adaptations have resulted in mosquitoes shifting their time of blood feeding to earlier or later in the night when the bed nets are not being employed. Little is known about the genetic basis of these behavioral shifts. We conducted quantitative trait locus (QTL) analysis using two strains of Culex pipiens sensu lato with contrasting blood feeding behaviors, wherein the lab adapted Shasta strain blood feeds at any time of the day or night, while the newly established Trinidad strain feeds only at night. We identified a single locus on chromosome 2 associated with the observed variation in feeding times. None of the core clock genes period, timeless, clock, cycle, PAR-domain protein 1, vrille, discs overgrown, cryptochrome 1, or cryptochrome 2 were located within the QTL region. We then monitored locomotor behavior to determine if they differed in their flight activity. The highly nocturnal Trinidad strain showed little daytime activity while the day-feeding Shasta strain was active during the day, suggesting blood feeding behavior and flight activity are physiologically linked.


Assuntos
Culex , Culicidae , Infecção por Zika virus , Zika virus , Animais , Criptocromos/genética , Culex/fisiologia , Culicidae/genética , Comportamento Alimentar , Humanos , Mosquitos Vetores/genética , Locos de Características Quantitativas , Zika virus/genética
10.
J Am Mosq Control Assoc ; 38(3): 165-174, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35852841

RESUMO

We carried out vector surveillance to locate adult sites of Culex quinquefasciatus, a filarial vector, during the summer in North Campus, Delhi University, Delhi, India. It revealed that the adults were a rare sight but landed naturally and assembled in indoor sites during the peak summer in 2016 and 2019. New adults repopulated some of these sites, after the removal of the samples. These adults were used to study the impact of summer stressors on their morphological, physiological, and behavioral traits, and strategies followed to oversummer in the urban environment. Adults adopted endophily, vagility, and staying at a lower height as strategies to avoid lethality. Females outnumbered the males, and showed morphological, physiological, and behavioral consequences; the majority were unfed. In females, sublethal effects such as aberrations of body parts including mouthparts; distorted oviposition pattern, reduced fecundity, and precocious tanning of retained eggs; and reduced egg hatch rate contributed to reduced survival and reduced reproductive output, thereby reducing vector load during peak summer. These are novel findings. Source reduction of adults during this period would provide effective eco-friendly control of this established species and should be part of the vector management strategies so that swarms of adults during monsoon could be prevented.


Assuntos
Culex , Animais , Culex/fisiologia , Feminino , Humanos , Masculino , Mosquitos Vetores , Oviposição , Refúgio de Vida Selvagem , Estações do Ano
11.
J Biol Chem ; 298(9): 102271, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35850302

RESUMO

Animals detect heat using thermosensitive transient receptor potential (TRP) channels. In insects, these include TRP ankyrin 1 (TRPA1), which in mosquitoes is crucial for noxious heat avoidance and thus is an appealing pest control target. However, the molecular basis for heat-evoked activation has not been fully elucidated, impeding both studies of the molecular evolution of temperature sensitivity and rational design of inhibitors. In TRPA1 and other thermosensitive TRPs, the N-terminal cytoplasmic ankyrin repeat (AR) domain has been suggested to participate in heat-evoked activation, but the lack of a structure containing the full AR domain has hindered our mechanistic understanding of its role. Here, we focused on elucidating the structural basis of apparent temperature threshold determination by taking advantage of two closely related mosquito TRPA1s from Aedes aegypti and Culex pipiens pallens with 86.9% protein sequence identity but a 10 °C difference in apparent temperature threshold. We identified two positions in the N-terminal cytoplasmic AR domain of these proteins, E417 (A. aegypti)/Q414 (C. pipiens) and R459 (A. aegypti)/Q456 (C. pipiens), at which a single exchange of amino acid identity was sufficient to change apparent thresholds by 5 to 7 °C. We further found that the role of these positions is conserved in TRPA1 of a third related species, Anopheles stephensi. Our results suggest a structural basis for temperature threshold determination as well as for the evolutionary adaptation of mosquito TRPA1 to the wide range of climates inhabited by mosquitoes.


Assuntos
Aedes , Repetição de Anquirina , Culex , Temperatura Alta , Canal de Cátion TRPA1 , Aedes/genética , Aedes/fisiologia , Animais , Repetição de Anquirina/genética , Culex/genética , Culex/fisiologia , Domínios Proteicos , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/genética
12.
Sci Rep ; 12(1): 11587, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804074

RESUMO

Various environmental drivers influence life processes of insect vectors that transmit human disease. Life histories observed under experimental conditions can reveal such complex links; however, designing informative experiments for insects is challenging. Furthermore, inferences obtained under controlled conditions often extrapolate poorly to field conditions. Here, we introduce a pseudo-stage-structured population dynamics model to describe insect development as a renewal process with variable rates. The model permits representing realistic life stage durations under constant and variable environmental conditions. Using the model, we demonstrate how random environmental variations result in fluctuating development rates and affect stage duration. We apply the model to infer environmental dependencies from the life history observations of two common disease vectors, the southern (Culex quinquefasciatus) and northern (Culex pipiens) house mosquito. We identify photoperiod, in addition to temperature, as pivotal in regulating larva stage duration, and find that carefully timed life history observations under semi-field conditions accurately predict insect development throughout the year. The approach we describe augments existing methods of life table design and analysis, and contributes to the development of large-scale climate- and environment-driven population dynamics models for important disease vectors.


Assuntos
Culex , Culicidae , Animais , Clima , Culex/fisiologia , Humanos , Mosquitos Vetores , Dinâmica Populacional
13.
BMC Biol ; 20(1): 110, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549721

RESUMO

BACKGROUND: Mosquitoes locate a human host by integrating various sensory cues including odor, thermo, and vision. However, their innate light preference and its genetic basis that may predict the spatial distribution of mosquitoes, a prerequisite to encounter a potential host and initiate host-seeking behaviors, remains elusive. RESULTS: Here, we first studied mosquito visual features and surprisingly uncovered that both diurnal (Aedes aegypti and Aedes albopictus) and nocturnal (Culex quinquefasciatus) mosquitoes significantly avoided stronger light when given choices. With consistent results from multiple assays, we found that such negative phototaxis maintained throughout development to adult stages. Notably, female mosquitoes significantly preferred to bite hosts in a shaded versus illuminated area. Furthermore, silencing Opsin1, a G protein-coupled receptor that is most enriched in compound eyes, abolished light-evoked avoidance behavior of Aedes albopictus and attenuated photonegative behavior in Aedes aegypti. Finally, we found that field-collected Aedes albopictus also prefers darker area in an Opsin1-dependent manner. CONCLUSIONS: This study reveals that mosquitoes consistently prefer darker environment and identifies the first example of a visual molecule that modulates mosquito photobehavior.


Assuntos
Aedes , Culex , Aedes/fisiologia , Animais , Aprendizagem da Esquiva , Culex/fisiologia , Comportamento Alimentar , Feminino , Humanos
14.
Vet Pathol ; 59(5): 836-849, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35400259

RESUMO

Insects play an important role in ecosystems. Changes in their abundance and biodiversity are of paramount interest, as there has not only been an alarming decline of insects important for ecosystem health throughout the past decades, but also an increase in insects detrimental for biomes. Furthermore, insects pose a threat to modern society as arbovirus-transmitting vectors. Therefore, detailed knowledge of insect staining characteristics could be beneficial as a basis for further studies, whether in the context of species conservation or control of insect pests. Thus, this study compared 14 histochemical stains for their usefulness in insects regarding nervous tissue, connective tissue components, mucins and polysaccharides, mineralization, and microorganisms. The study used formalin-fixed paraffin-embedded tissue sections of mammals (Equus caballus) and 2 dipterans (Culex pipiens biotype molestus, Drosophila melanogaster). Several histochemical stains were suitable for tissue assessment in insects and mammals, in particular for nervous tissue (Bielschowsky silver stain, luxol fast blue-cresyl violet) and polysaccharides (alcian blue, periodic acid-Schiff with and without diastase treatment, toluidine blue). Other stains proved useful for visualization of insect-specific organ characteristics such as Gomori's reticulin stain for tracheoles in both dipteran species, Heidenhain's azan for midgut-associated connective tissue, and von Kossa for mineral deposition in Malpighian tubules of C. pipiens biotype molestus. In summary, this study provides comparable insights into histochemical procedures in mammals and insects and their usefulness for histological assessment of C. pipiens biotype molestus and D. melanogaster.


Assuntos
Culex , Animais , Culex/fisiologia , Drosophila melanogaster , Ecossistema , Cavalos , Mamíferos , Mosquitos Vetores , Coloração e Rotulagem/veterinária
15.
J Insect Physiol ; 138: 104383, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35315335

RESUMO

Insect behaviour relies on an olfactory sensory system that controls a range of activities, from food choice and mating to oviposition, where pheromones play a central role. In Culex mosquitoes, egg-laying is accompanied by the release of mosquito oviposition pheromone (MOP), which has been shown to affect the oviposition behaviour of conspecifics. Here, we investigated for the first time the effect of MOP on the oviposition rate of Culex pipiens biotype molestus, examining separately males and females, before and after mating and oviposition. Our results demonstrate that MOP is more likely to act as an oviposition stimulant rather than an attractant, since more gravid females laid eggs in its presence, while the number of male or female mosquitoes (virgin or mated) captured on pheromone-treated pots was similar to those treated with control water.


Assuntos
Culex , Animais , Culex/fisiologia , Feminino , Masculino , Oviposição , Óvulo , Feromônios/farmacologia , Reprodução
16.
PLoS One ; 17(3): e0262376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35271575

RESUMO

Weather and land use can significantly impact mosquito abundance and presence, and by consequence, mosquito-borne disease (MBD) dynamics. Knowledge of vector ecology and mosquito species response to these drivers will help us better predict risk from MBD. In this study, we evaluated and compared the independent and combined effects of weather and land use on mosquito species occurrence and abundance in Eastern Ontario, Canada. Data on occurrence and abundance (245,591 individuals) of 30 mosquito species were obtained from mosquito capture at 85 field sites in 2017 and 2018. Environmental variables were extracted from weather and land use datasets in a 1-km buffer around trapping sites. The relative importance of weather and land use on mosquito abundance (for common species) or occurrence (for all species) was evaluated using multivariate hierarchical statistical models. Models incorporating both weather and land use performed better than models that include weather only for approximately half of species (59% for occurrence model and 50% for abundance model). Mosquito occurrence was mainly associated with temperature whereas abundance was associated with precipitation and temperature combined. Land use was more often associated with abundance than occurrence. For most species, occurrence and abundance were positively associated with forest cover but for some there was a negative association. Occurrence and abundance of some species (47% for occurrence model and 88% for abundance model) were positively associated with wetlands, but negatively associated with urban (Culiseta melanura and Anopheles walkeri) and agriculture (An. quadrimaculatus, Cs. minnesotae and An. walkeri) environments. This study provides predictive relationships between weather, land use and mosquito occurrence and abundance for a wide range of species including those that are currently uncommon, yet known as arboviruses vectors. Elucidation of these relationships has the potential to contribute to better prediction of MBD risk, and thus more efficiently targeted prevention and control measures.


Assuntos
Aedes , Culex , Culicidae , Doenças Transmitidas por Vetores , Aedes/fisiologia , Agricultura , Animais , Culex/fisiologia , Humanos , Mosquitos Vetores , Ontário , Doenças Transmitidas por Vetores/epidemiologia , Tempo (Meteorologia)
17.
J Insect Physiol ; 137: 104363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35121007

RESUMO

Mosquitoes readily lose water when exposed to any humidity less than that of near saturated air unless mitigated, leading to shifts in behavior, survival, distribution, and reproduction. In this study, we conducted a series of physiological experiments on two prominent species in the Culicinae subfamily: Culex pipiens, a vector of West Nile virus, and Aedes aegypti, a vector of yellow fever and Zika to examine the effects of dehydration. We exposed C. pipiens and A. aegypti to non-dehydrating conditions (saturated air), dehydrating conditions (air at a 0.89 kPa saturation vapor pressure deficit), several recovery conditions, as well as to bloodfeeding opportunities. We show that dehydrated mosquitoes increase bloodfeeding propensity, improve retention, and decrease excretion of a post-dehydration bloodmeal. In addition, mosquitoes that take a bloodmeal prior to dehydration exposure show increased survival over non-bloodfed counterparts. Dehydration-induced alterations in survival, reproduction, and bloodfeeding propensity of C. pipiens and A. aegypti resulted in marked changes to vectorial capacity. Ultimately, these results become increasingly important as drought intensifies in association with climate change and mosquitoes become more likely to experience arid periods.


Assuntos
Aedes , Culex , Vírus do Nilo Ocidental , Infecção por Zika virus , Zika virus , Aedes/fisiologia , Animais , Culex/fisiologia , Desidratação , Mosquitos Vetores/fisiologia
18.
PLoS Negl Trop Dis ; 16(2): e0010204, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35130307

RESUMO

BACKGROUND: Culex pipiens quinquefasciatus Say (Cx. quinquefasciatus) and Culex pipiens form molestus Forskal (Cx. molestus) in the Culex pipiens complex group show considerable differences in host seeking, blood feeding, mating behavior and in vector competence. Blood-feeding mosquito behaviors are closely related to their olfactory gene expression and olfactory gene repertoire composition. Comparing olfactory genes between these two subspecies with significantly different blood-feeding behaviors can support further research on the molecular mechanism of the Culex pipiens complex olfactory sensory system, providing a new approach for determining candidate attractant or repellent compounds. METHODS: Non-blood-feeding (NBF) and post-blood-feeding (PBF) olfactory system transcriptomes of the two subspecies were sequenced, and the biological functions of their differentially expressed genes were described by bioinformatics analysis. A quantitative polymerase chain reaction (qPCR) was applied to validate the RNA-seq data. The roles of particular olfactory receptors in Cx. quinquefasciatus blood-feeding behaviors were evaluated by RNAi. RESULTS: Five, 7, 24, and 3 Cx. quinquefasciatus-specific OBPs, Cx. molestus-specific OBPs, Cx. quinquefasciatus-specific ORs and Cx. molestus-specific ORs were identified, respectively. The majority of selected ORs were consistent with the predicted transcriptome sequencing results after qRT-PCR validation. OR5 was expressed only in Cx. quinquefasciatus, and OR65 was the only gene upregulated after blood feeding in Cx. molestus. The blood-feeding rates of the OR5 and OR78 dsRNA groups were significantly lower (4.3%±3.1% and 13.3%±11.5%) than those of the enhanced green fluorescence protein (EGFP) group (64.5%±8.7%). CONCLUSION: Most OBPs and ORs were expressed in both subspecies but showed divergence in expression level. OR5 and OR65 might be species-specific expressed genes that regulate the olfactory behaviors of Cx. quinquefasciatus and Cx. molestus, respectively. The RNA interference of OR5 and OR78 could inhibit the blood-feeding behavior of Cx. quinquefasciatus, providing new targets for screening effective repellent compounds to control mosquito-borne diseases effectively and efficiently.


Assuntos
Culex/genética , Comportamento Alimentar/fisiologia , Receptores Odorantes/genética , Animais , Sangue , Culex/classificação , Culex/metabolismo , Culex/fisiologia , Feminino , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Camundongos , Mosquitos Vetores/genética
19.
J Med Entomol ; 59(2): 648-658, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-34747999

RESUMO

Diapause is a hormonally driven response which is triggered by environmental cues that signal impending adverse conditions and prompts metabolic, developmental, and behavioral changes to allow survival until the return of favorable conditions. Microbial symbionts have been shown to influence the metabolism, development, and behavior of their host organisms, all of which are common diapause-associated characteristics. Surveys of bacterial components in relation to diapause have been examined in few systems, of which the species are usually inactive during dormancy, such as eggs or pupae. This is specifically intriguing as adult female diapause in Culex pipiens (Diptera: Culicidae) can last between 4 and 7 mo and females remain mobile within their hibernacula. Furthermore, it is unknown how microbiota changes associated with prolonged dormancy are different between the lab and field for insect systems. This study aims to characterize how the microbiota of C. pipiens changes throughout diapause under both field and lab settings when provided identical food and water resources. Based on these studies, C. pipiens microbiota shifts as diapause progresses and there are considerable differences between field and lab individuals even when provided the same carbohydrate and water sources. Specific bacterial communities have more association with different periods of diapause, field and lab rearing conditions, and nutritional reserve levels. These studies highlight that diapausing mosquito microbiota studies ideally should occur in field mesocosms and at multiple locations, to increase applicability to wild C. pipiens as prolonged exposure to artificial rearing conditions could impact metrics related to diapause-microbiome interactions. Additionally, these findings suggest that it would be worthwhile to establish if the microbiota shift during diapause impacts host physiology and whether this shift is critical to diapause success.


Assuntos
Culex , Culicidae , Diapausa de Inseto , Diapausa , Animais , Bactérias , Culex/fisiologia , Feminino
20.
PLoS One ; 16(12): e0260253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34919572

RESUMO

Microbial synthesis of silver nanoparticles is more advantageous and is eco-friendly to combat the various vectors that cause diseases in humans. Hence, in the present study a Bacillus strain is isolated from marine habitat and is evaluated for its ability to synthesize silver nanoparticles (AgNPs) and its efficacy evaluated against the immature stages of selected mosquito species. The effective candidate was confirmed to be Bacillus marisflavi after 16S rRNA sequencing. The synthesis of AgNPs was confirmed by UV-Vis spectrophotometer. Atomic Force Microscopic (AFM) analysis showed spherical nanoparticles. Size analysis using Scanning Electron Microscope (SEM) showed particles of nano size averaging 78.77 nm. The diameter of the particles analyzed by Dynamic Light Scattering (DLS) showed 101.6 nm with a poly-dispersive index of 0.3. Finally the elemental nature of the nanoparticles was identified by Fourier-transform infrared spectroscopy (FTIR). LC50 and LC90 values for the ovicidal, larvicidal and pupicidal efficacy of the AgNPs against the egg, larvae and pupae of Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi respectively were evaluated. The present study revealed that the nanoparticles have an excellent toxic effect against the disease transmitting vector mosquitoes. Hence, the rapid synthesis of AgNPs would be an appropriate eco-friendly tool for biocontrol of vector mosquitoes.


Assuntos
Aedes/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Bacillus/química , Culex/efeitos dos fármacos , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Prata/farmacologia , Aedes/fisiologia , Animais , Anopheles/fisiologia , Organismos Aquáticos , Bacillus/genética , Bacillus/metabolismo , Culex/fisiologia , Química Verde , Concentração Inibidora 50 , Inseticidas/química , Larva/efeitos dos fármacos , Larva/fisiologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia , Tamanho da Partícula , Pupa/efeitos dos fármacos , Pupa/fisiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Prata/química , Zigoto/efeitos dos fármacos , Zigoto/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...